Enter a problem...
Finite Math Examples
20cd20cd , 40a2c2d440a2c2d4 , 15abd315abd3
Step 1
Since 20cd,40a2c2d4,15abd320cd,40a2c2d4,15abd3 contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part 20,40,1520,40,15 then find LCM for the variable part c1,d1,a2,c2,d4,a1,b1,d3c1,d1,a2,c2,d4,a1,b1,d3.
Step 2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 3
Step 3.1
2020 has factors of 22 and 1010.
2⋅102⋅10
Step 3.2
1010 has factors of 22 and 55.
2⋅2⋅52⋅2⋅5
2⋅2⋅52⋅2⋅5
Step 4
Step 4.1
4040 has factors of 22 and 2020.
2⋅202⋅20
Step 4.2
2020 has factors of 22 and 1010.
2⋅2⋅102⋅2⋅10
Step 4.3
1010 has factors of 22 and 55.
2⋅2⋅2⋅52⋅2⋅2⋅5
2⋅2⋅2⋅52⋅2⋅2⋅5
Step 5
1515 has factors of 33 and 55.
3⋅53⋅5
Step 6
The LCM of 20,40,1520,40,15 is the result of multiplying all prime factors the greatest number of times they occur in either number.
2⋅2⋅2⋅3⋅52⋅2⋅2⋅3⋅5
Step 7
Step 7.1
Multiply 22 by 22.
4⋅2⋅3⋅54⋅2⋅3⋅5
Step 7.2
Multiply 44 by 22.
8⋅3⋅58⋅3⋅5
Step 7.3
Multiply 88 by 33.
24⋅524⋅5
Step 7.4
Multiply 2424 by 55.
120120
120120
Step 8
The factor for c1c1 is cc itself.
c1=cc1=c
cc occurs 11 time.
Step 9
The factor for d1d1 is dd itself.
d1=dd1=d
dd occurs 11 time.
Step 10
The factors for a2a2 are a⋅aa⋅a, which is aa multiplied by each other 22 times.
a2=a⋅aa2=a⋅a
aa occurs 22 times.
Step 11
The factors for c2c2 are c⋅cc⋅c, which is cc multiplied by each other 22 times.
c2=c⋅cc2=c⋅c
cc occurs 22 times.
Step 12
The factors for d4d4 are d⋅d⋅d⋅dd⋅d⋅d⋅d, which is dd multiplied by each other 44 times.
d4=d⋅d⋅d⋅dd4=d⋅d⋅d⋅d
dd occurs 44 times.
Step 13
The factor for a1a1 is aa itself.
a1=aa1=a
aa occurs 11 time.
Step 14
The factor for b1b1 is bb itself.
b1=bb1=b
bb occurs 11 time.
Step 15
The factors for d3d3 are d⋅d⋅dd⋅d⋅d, which is dd multiplied by each other 33 times.
d3=d⋅d⋅dd3=d⋅d⋅d
dd occurs 33 times.
Step 16
The LCM of c1,d1,a2,c2,d4,a1,b1,d3c1,d1,a2,c2,d4,a1,b1,d3 is the result of multiplying all prime factors the greatest number of times they occur in either term.
c⋅c⋅d⋅d⋅d⋅d⋅a⋅a⋅bc⋅c⋅d⋅d⋅d⋅d⋅a⋅a⋅b
Step 17
Step 17.1
Multiply cc by cc.
c2⋅d⋅d⋅d⋅d⋅a⋅a⋅bc2⋅d⋅d⋅d⋅d⋅a⋅a⋅b
Step 17.2
Multiply dd by dd by adding the exponents.
Step 17.2.1
Move dd.
c2⋅(d⋅d)⋅d⋅d⋅a⋅a⋅bc2⋅(d⋅d)⋅d⋅d⋅a⋅a⋅b
Step 17.2.2
Multiply dd by dd.
c2⋅d2⋅d⋅d⋅a⋅a⋅bc2⋅d2⋅d⋅d⋅a⋅a⋅b
c2⋅d2⋅d⋅d⋅a⋅a⋅bc2⋅d2⋅d⋅d⋅a⋅a⋅b
Step 17.3
Multiply d2d2 by dd by adding the exponents.
Step 17.3.1
Move dd.
c2⋅(d⋅d2)⋅d⋅a⋅a⋅bc2⋅(d⋅d2)⋅d⋅a⋅a⋅b
Step 17.3.2
Multiply dd by d2d2.
Step 17.3.2.1
Raise dd to the power of 11.
c2⋅(d1d2)⋅d⋅a⋅a⋅bc2⋅(d1d2)⋅d⋅a⋅a⋅b
Step 17.3.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
c2⋅d1+2⋅d⋅a⋅a⋅bc2⋅d1+2⋅d⋅a⋅a⋅b
c2⋅d1+2⋅d⋅a⋅a⋅bc2⋅d1+2⋅d⋅a⋅a⋅b
Step 17.3.3
Add 11 and 22.
c2⋅d3⋅d⋅a⋅a⋅bc2⋅d3⋅d⋅a⋅a⋅b
c2⋅d3⋅d⋅a⋅a⋅bc2⋅d3⋅d⋅a⋅a⋅b
Step 17.4
Multiply d3d3 by dd by adding the exponents.
Step 17.4.1
Move dd.
c2⋅(d⋅d3)⋅a⋅a⋅bc2⋅(d⋅d3)⋅a⋅a⋅b
Step 17.4.2
Multiply dd by d3d3.
Step 17.4.2.1
Raise dd to the power of 11.
c2⋅(d1d3)⋅a⋅a⋅bc2⋅(d1d3)⋅a⋅a⋅b
Step 17.4.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
c2⋅d1+3⋅a⋅a⋅bc2⋅d1+3⋅a⋅a⋅b
c2⋅d1+3⋅a⋅a⋅bc2⋅d1+3⋅a⋅a⋅b
Step 17.4.3
Add 11 and 33.
c2⋅d4⋅a⋅a⋅bc2⋅d4⋅a⋅a⋅b
c2⋅d4⋅a⋅a⋅bc2⋅d4⋅a⋅a⋅b
Step 17.5
Multiply aa by aa by adding the exponents.
Step 17.5.1
Move aa.
c2⋅d4⋅(a⋅a)⋅bc2⋅d4⋅(a⋅a)⋅b
Step 17.5.2
Multiply aa by aa.
c2⋅d4⋅a2⋅bc2⋅d4⋅a2⋅b
c2d4a2bc2d4a2b
c2d4a2bc2d4a2b
Step 18
The LCM for 20cd,40a2c2d4,15abd320cd,40a2c2d4,15abd3 is the numeric part 120120 multiplied by the variable part.
120c2d4a2b120c2d4a2b